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PROOF OF THE BARKER ARRAY CONJECTURE
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(Communicated by John R. Stembridge)

Abstract. Using only elementary methods, we prove Alquaddoomi and Scholtz’s
conjecture of 1989, that no s × t Barker array having s, t > 1 exists except

when s = t = 2.

1. Introduction

Binary sequences and arrays whose out-of-phase aperiodic autocorrelations are
collectively small are particularly useful in digital communication systems, espe-
cially synchronisation and radar. The search for such sequences and arrays dates
from the 1950s [2], [16] and continues to the present day [7], [9], [13], [14]. We de-
fine an s× t array to be a two-dimensional array (aij) of complex-valued elements
satisfying

aij = 0 unless 0 ≤ i < s and 0 ≤ j < t.

The array is binary if all nonzero elements aij take values in {1,−1}. The aperiodic
autocorrelation function of an s× t array A = (aij) is given by

CA(u, v) =
∑

i

∑
j

aijai+u,j+v for integer u, v satisfying |u| < s and |v| < t.

We refer to an s× 1 array as a sequence of length s, abbreviating the array (ai0) to
(ai) and its aperiodic autocorrelation function CA(u, 0) to CA(u).

Alquaddoomi and Scholtz [1] defined an s× t Barker array to be an s× t binary
array A for which

|CA(u, v)| ≤ 1 for all (u, v) 6= (0, 0).

This generalises the notion of a Barker sequence from one dimension (the case s = 1
or t = 1) to two dimensions; see [10] and [11] for recent nonexistence results for

Barker sequences. The 2×2 array
[

+ +
+ −

]
is a Barker array, but it is conjectured

that there are no other sizes for a (truly two-dimensional) Barker array:
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Conjecture 1.1 (Alquaddoomi and Scholtz 1989 [1]). If an s × t Barker array
exists for s, t > 1 then s = t = 2.

In this paper we prove Conjecture 1.1 using only elementary methods. We include
short proofs of key auxiliary results obtained elsewhere, in order to make the paper
self-contained. Theorem 1.2 summarises the previous state of knowledge regarding
Conjecture 1.1.

Theorem 1.2 (Jedwab [6], Jedwab, Lloyd and Mowbray [8]). Let A be an s × t
Barker array with s, t > 1. Then

Case 1. s, t even: s = t. If t > 2 then t ≡ 0 (mod 4) and t ≥ 12.
Case 2. s even, t > 1 odd: s > t. s = 4S2 and t = T 2 for integers S, T .
There exists a Barker sequence of length s.
Case 3. s, t > 1 odd: st ≥ 311. Write t =

∏
j p

αj

j , where the {pj} are
distinct primes and αj ≥ 1 for all j. Then αj ≥ 2 for all j and αk > 2 for
some k. If st ≡ 1 (mod 4) then pj ≡ 1 (mod 4) for all j.

Following [1], define the following function for an s× t array A = (aij):

(1.1) PA(u, v) = CA(u, v) + CA(u, v − t) for −s < u < s and 0 ≤ v < t.

Any expression involving PA(u, v) or CA(u, v) will implicitly refer only to values of
(u, v) for which the function is defined. In terms of the array elements aij we have

(1.2) PA(u, v) =
∑

i

t−1∑
j=0

aijai+u,(j+v) mod t.

Alquaddoomi and Scholtz [1] established Lemma 1.3 for binary arrays, and then
used it to prove Proposition 1.4 for Barker arrays. This generalised the approach
taken by Tuyrn and Storer in their classical paper [15] on the one-dimensional
(sequence) case.

Lemma 1.3 (Alquaddoomi and Scholtz [1]). Let A be an s× t binary array. Then

PA(u, v) ≡ PA(u, v′) (mod 4) for all (u, v, v′).

Proof. Let u, v, v′ satisfy −s < u < s and 0 ≤ v, v′ < t. From (1.2), PA(u, v) is the
sum of (s − |u|)t nonzero terms, of which exactly [(s − |u|)t − PA(u, v)]/2 are −1
and [(s− |u|)t + PA(u, v)]/2 are +1. But from (1.2), the product of these nonzero
terms is independent of v. Therefore

(−1)[(s−|u|)t−PA(u,v)]/2

is independent of v, which implies PA(u, v) ≡ PA(u, v′) (mod 4). �

Proposition 1.4 (Alquaddoomi and Scholtz [1]). Let A be an s× t Barker array
with st > 2. Then

Case 1. s, t even:

PA(u, v) = 0 for (u, v) 6= (0, 0).

Case 2. s even and t odd:

PAT (v, u) = 0 for (u, v) 6= (0, 0),

PA(u, v) =
{

0 for u even and (u, v) 6= (0, 0)
k(u) for u odd,

where k(u) = 1 or −1.
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Case 3. s, t odd:

PA(u, v) =
{

k for u even and (u, v) 6= (0, 0)
0 for u odd,

where k = 1 or −1.

Proof. For all u, v satisfying |u| < s and |v| < t, CA(u, v) is the sum of (s−|u|)(t−
|v|) nonzero terms, each of which is ±1. Therefore CA(u, v) ≡ (s+u)(t+v) (mod 2).
The Barker array property then implies

(1.3) CA(u, v) = ±(((s + u)(t + v)) mod 2) for (u, v) 6= (0, 0).

Case 1. s, t even: From (1.3) we have

CA(u, v) = 0 for u or v even and (u, v) 6= (0, 0).

Then by (1.1),

PA(u, v) = 0 for u or v even and (u, v) 6= (0, 0).

Lemma 1.3 then implies that

PA(u, v) = 0 for (u, v) 6= (0, 0).

Case 2. s even, t odd: From (1.3) we have

(1.4) CA(u, v) = ±((u(1 + v)) mod 2) for (u, v) 6= (0, 0).

It follows from (1.1) that

PA(u, v) =
{

0 for u even and (u, v) 6= (0, 0)
±1 for u odd.

Lemma 1.3 then implies that

(1.5) PA(u, v) =
{

0 for u even and (u, v) 6= (0, 0)
k(u) for u odd,

where k(u) = 1 or −1, as required.
We next consider the function

(1.6) PAT (v, u) = CA(u, v) + CA(u− s, v).

From (1.4),

(1.7) PAT (v, u) = 0 for u even and (u, v) 6= (0, 0).

Lemma 1.3 applied to AT states that

PAT (v, u) ≡ PAT (v, u′) (mod 4) for all (u, u′, v),

giving

(1.8) PAT (v, u) = 0 for (u, v) 6= (0, 0), except when s = 2 and (u, v) = (1, 0)

(since, when s = 2 and v = 0, there is no value of u satisfying the conditions
of (1.7)).

To complete the proof of Case 2, we now derive a contradiction for the
case s = 2, so that (1.8) holds without the exception. By assumption
st > 2 and s = 2, so t > 1 and we can choose an even value of v satisfying
0 < v < t. From (1.5),

k(1) = PA(1, v) = PA(1, t− v)
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and so from (1.1) and (1.4),

(1.9) ±1 = CA(1, v) = CA(1,−v).

But by (1.8), PAT (v, 1) = 0 and so from (1.6) we get

0 = CA(1, v) + CA(−1, v)
= CA(1, v) + CA(1,−v)

since CA(u, v) = CA(−u,−v) for all u, v. This contradicts (1.9).
Case 3. s, t odd: From (1.3) we have

CA(u, v) = ±(((1 + u)(1 + v)) mod 2) for (u, v) 6= (0, 0).

Then by (1.1),

PA(u, v) =
{
±1 for u even and (u, v) 6= (0, 0)
0 for u odd.

Lemma 1.3 then implies that

PA(u, v) =
{

k(u) for u even and (u, v) 6= (0, 0)
0 for u odd,

where k(u) = 1 or −1. By symmetry in s and t we also obtain

PAT (v, u) =
{

k′(v) for v even and (u, v) 6= (0, 0)
0 for v odd,

where k′(v) = 1 or −1. But, for u, v even and (u, v) 6= (0, 0), by (1.3)
the single nonzero contribution to PA(u, v) = CA(u, v) + CA(u, v − t) and
to PAT (v, u) = CA(u, v) + CA(u − s, v) is the same term C(u, v), and so
k(u) = k′(v) = k.

�

Proposition 1.4 is implied by Theorem 2 and equations (21)–(23) of [1]. Lemma 3.5
of [6] shows that an s× t binary array A having PA(u, v) = 0 for all (u, v) 6= (0, 0)
is equivalent to A being simultaneously a perfect binary array and a “quasiperfect”
binary array. This in turn is equivalent to the −1 elements of A corresponding
to a (4N2, 2N2 − N,N2 − N)-difference set in Zs × Zt, where st = 4N2 (see [4],

for example); and the −1 elements of
[

A
−A

]
corresponding to an (st, 2, st, st/2)

relative difference set in Z2s × Zt = 〈x〉 × 〈y〉, where x2s = yt = 1, relative to 〈xs〉
(see [17]). See [3] or [12] for background on difference sets and relative difference
sets.

2. Proof of the Conjecture

We begin with two lemmas.

Lemma 2.1. Let A = (aij) be an s× t binary array and let ζ be a (not necessarily
primitive) tth root of unity. Let X = (xi) be the complex-valued sequence of length s
given by

(2.1) xi =
∑

j

aijζ
j .



PROOF OF THE BARKER ARRAY CONJECTURE 5

Then

CX(u) =
t−1∑
v=0

PA(u, v)ζ−v for all u.

Proof. From (1.2), for all u,

t−1∑
v=0

PA(u, v)ζ−v =
t−1∑
v=0

∑
i

∑
j

aijai+u,(j+v) mod tζ
−v

=
∑

i

∑
j

aij

t−1∑
k=0

ai+u,kζj−k,

writing k = (j + v) mod t and using ζt = 1. Hence, for all u,

t−1∑
v=0

PA(u, v)ζ−v =
∑

i

∑
j

aijζ
j
∑

k

ai+u,kζk

=
∑

i

xixi+u

= CX(u),

as required. �

Lemma 2.2. Let X = (xi) be a complex-valued sequence of length s for which

CX(u) = 0 for u 6= 0.

Then, for some I satisfying 0 ≤ I < s,

|xi|2 =
{

0 for i 6= I,
CX(0) for i = I.

Proof. By the definition of aperiodic autocorrelation, we are given that

(2.2)
∑

i

xixi+u = 0 for 0 < u < s.

We prove by induction on s that, for some I satisfying 0 ≤ I < s,

|xi|2 = 0 for i 6= I.

The case s = 1 is immediate (take I = 0). Assume case s − 1 to be true. Put
u = s− 1 in (2.2) to give x0xs−1 = 0. This implies, without loss of generality, that
xs−1 = 0. Then from (2.2) we have

s−u−2∑
i=0

xixi+u = 0 for 0 < u < s− 1.

By the inductive hypothesis it follows that, for some I satisfying 0 ≤ I < s − 1,
|xi|2 = 0 for i 6= I. Combining this with xs−1 = 0 gives the case s, completing the
induction.

Furthermore, by the definition of aperiodic autocorrelation, CX(0) =
∑

i |xi|2
and so CX(0) = |xI |2, as required. �
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The case ζ = 1 of Lemma 2.1 was used as a starting point in [5], [6] and [8] to
derive equations in the row sums

∑
j aij of an s × t Barker array from Proposi-

tion 1.4, leading eventually to Theorem 1.2. We will now use the case where ζ is a
primitive tth root of unity to prove Conjecture 1.1.

Theorem 2.3. If an s× t Barker array A = (aij) exists for s, t > 1 then s = t = 2.

Proof. Let ζ be a primitive tth root of unity and define X = (xi) as in (2.1). We
will show that the case s, t even forces the result s = t = 2, whereas the case s
even, t odd and the case s, t odd both result in a contradiction. These three cases
are exhaustive, because the transpose of a Barker array is also a Barker array.

Case 1. s, t even: Proposition 1.4 and Lemma 2.1 together give

CX(u) =
{

0 for u 6= 0
st for u = 0,

using PA(0, 0) = C(0, 0) = st. Then by Lemma 2.2 there is some I satisfy-
ing 0 ≤ I < s for which

(2.3) |xI |2 = st.

But by (2.1),

|xI |2 =

∣∣∣∣∣∣
t−1∑
j=0

aIjζ
j

∣∣∣∣∣∣
2

≤

t−1∑
j=0

|aIjζ
j |

2

= t2.

It follows from (2.3) that

(2.4) s ≤ t, with equality ⇔ arg(aIjζ
j) is constant for all j satisfying 0 ≤ j < t.

Since s is even, by symmetry in s and t (or equivalently by applying the
same procedure to AT ) we have t ≤ s, forcing equality. Therefore s = t
and, since t > 1, by (2.4) we have t = 2.
Case 2. s even, t > 1 odd: By Proposition 1.4, the t× s array AT satisfies

PAT (v, u) = 0 for (u, v) 6= (0, 0).

The argument of Case 1 that led to (2.4), when applied to AT , gives t ≤
s. Furthermore the expression for PA in Proposition 1.4, together with
Lemma 2.1, gives

CX(u) =


0 for u even and u 6= 0
k(u)

∑t−1
v=0 ζ−v for u odd

st for u = 0

=
{

0 for u 6= 0
st for u = 0,

since ζ−1 is a primitive tth root of unity and t > 1. By Lemma 2.2 we then
obtain s ≤ t, by the same argument as in Case 1. Since we already have
t ≤ s this implies s = t, which contradicts the assumption that s is even
and t is odd.
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Case 3. s, t > 1 odd: Proposition 1.4 and Lemma 2.1 together give

CX(u) =

 k
∑t−1

v=0 ζ−v for u even and u 6= 0
0 for u odd
st + k

∑t−1
v=1 ζ−v for u = 0

=
{

0 for u 6= 0
st− k for u = 0,

where k = 1 or −1. Then by Lemma 2.2 there is some I satisfying 0 ≤ I < s
for which

(2.5) |xI |2 = st− k.

But, as in Case 1, |xI |2 ≤ t2 and so

st− k ≤ t2.

By symmetry in s and t we then have

(2.6) st− k ≤ min{s2, t2}.
Suppose, for a contradiction, that s 6= t and without loss of generality that
s ≥ t + 1. Then st − k ≥ t(t + 1) − k > t2, since k = 1 or −1 and t > 1.
This contradicts (2.6), and so s = t.

Then (2.6) forces k = 1, and from (2.1) and (2.5) we have

(2.7)

∣∣∣∣∣∣
t−1∑
j=0

aIjζ
j

∣∣∣∣∣∣
2

= t2 − 1.

Since t is odd, one of the sets {j : aIj = 1} and {j : aIj = −1} contains at
most (t−1)/2 elements; without loss of generality, suppose it is the former.
This implies that∣∣∣∣∣∣

t−1∑
j=0

aIjζ
j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
t−1∑
j=0

aIjζ
j +

t−1∑
j=0

ζj

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣2
∑

j: aIj=1

ζj

∣∣∣∣∣∣
2

≤ 4

 ∑
j: aIj=1

|ζj |

2

≤ 4
(

t− 1
2

)2

< t2 − 1,

since t > 1. This contradicts (2.7).
�
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